x^2/2+35x-62.5=P(x)

Simple and best practice solution for x^2/2+35x-62.5=P(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2/2+35x-62.5=P(x) equation:



x^2/2+35x-62.5=(x)
We move all terms to the left:
x^2/2+35x-62.5-((x))=0
determiningTheFunctionDomain x^2/2+35x-x-62.5=0
We add all the numbers together, and all the variables
x^2/2+34x-62.5=0
We multiply all the terms by the denominator
x^2+34x*2-(62.5)*2=0
We add all the numbers together, and all the variables
x^2+34x*2-125=0
Wy multiply elements
x^2+68x-125=0
a = 1; b = 68; c = -125;
Δ = b2-4ac
Δ = 682-4·1·(-125)
Δ = 5124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5124}=\sqrt{4*1281}=\sqrt{4}*\sqrt{1281}=2\sqrt{1281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-2\sqrt{1281}}{2*1}=\frac{-68-2\sqrt{1281}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+2\sqrt{1281}}{2*1}=\frac{-68+2\sqrt{1281}}{2} $

See similar equations:

| 0.8(20x+12=-35 | | Y=9x^2-27x | | 2(k+4)=3(k-2 | | 2/5(8/15x-4)=2/3x+3/5 | | 5c-7=22 | | 42x+-12=54 | | 3^2x-1=15 | | -12x+42=54 | | 5x-(2x-7)+14=0 | | -170.7=-7.5(6.1a+0.8) | | 2x-6+6=2x | | 876-8u=456 | | 9z+5(8+z)-6(z-7)=40 | | 3(=9+4x−5) | | 34=x/100 | | 4+8x=+9-7x | | x=0.5(2x-6+x-5) | | (8-x)=-2 | | 6+2a=5 | | (-7x+4)=0 | | -8(8x-7)=-328 | | 3(4x-5$=6x+15 | | 9a-5=10 | | -729=-9(7x+4) | | 23+4r=-7(7-4r) | | x+(x+15)= | | 3/5=9/x+4 | | 0.25(12-8x)=4(-2x-6) | | 11(-5x+15)=-440 | | 665/6=5(31/2x+7/6) | | 15,125÷w=605 | | 18/8=m/20 |

Equations solver categories